A Review of the Principles of Writing Mathematics Articles

16 December 2018

Zohreh Vasagh
Mathematicseditor@gmail.com

Vasagh,
Mathematicseditor @gmail.com
Your manuscript is both good and original; but the part that is good is not original, and the part that is original is not good.

Samuel Johnson

Which or that
Writing mathematics
Idots or \cdots
Equation
References
Contact information

Editor's office

The combinatorial interpretation of Muchnik's theorem ... مثال فوق بيانغر اين موضوع است كه فقط و فقط يك درونيابى تركيبى براى قضيء Muchnik وجود دارد.

Vasagh,
Mathematicseditor @gmail.com

Title
a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Vasagh,
Mathematicseditor @gmail.com

The combinatorial interpretation of Muchnik's theorem ... مثال فوق بيانگر اين موضوع است كه فقط و فقط يك درونيابى تركيبى براى قضيء Muchnik وجود دارد.

A combinatorial interpretation of Muchnik's theorem ... اما در مثال بالا اين موضوع بيان میشود كه در مقاله مذكور به يكى از درونيابىهاى تركيبى براى قضية́ Muchnik می يردازد.
a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idats or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Vasagh,
Mathematicseditor @gmail.com

The combinatorial interpretation of Muchnik's theorem ... مثال فوق بيانگر اين موضوع است كه فقط و فقط يك درونيابى تركيبى براى قضيء a قال وجود دارد.

A combinatorial interpretation of Muchnik's theorem ...
اما در مثال بالا اين موضوع بيان میشود كه در مقاله مذكور به يكى از
درونيابىهاى تركيبى براى قضيّة Muchnik مى پردازد.

Combinatorial interpretation of Muchnik's theorem ...
در آخرين مثال، عنوان مقاله بيانگ, اين است كه مقاله مذكور به بحث دربارء

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \backslash cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

a/an or the

x Let A be the set; then a set A is
Vasagh, Mathematicseditor @gmail.com

Title

$a /$ an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

a/an or the

x Let A be the set; then a set A is
\checkmark Let A be a set; then the set A is
Vasagh, Mathematicseditor @gmail.com

Title

$a /$ an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

a/an or the

x Let A be the set; then a set A is
\checkmark Let A be a set; then the set A is

incorrect \boldsymbol{X}	correct $\boldsymbol{\checkmark}$
a $n \times n$ matrix	an $n \times n$ matrix
a m-dimensional space	an m-dimensional space
a X-valued	an X-valued
a ω-continuous	an ω-continuous
a (α, β) generated	an (α, β) generated
a $S(E)$-admissible	an $S(E)$-admissible
a I^{P}-space	an I^{ρ}-space

Vasagh,
Mathematicseditor @gmail.com

Title

$a / a n$ or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

a/an or the

incorrect \boldsymbol{X}	correct $\boldsymbol{\checkmark}$
an unique element	a unique element
an univariate data set	a univariate data set
an sphere	a sphere
an university	a university
an state	a state

Vasagh,
Mathematicseditor @gmail.com

Title

a an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

a/an or the

incorrect \boldsymbol{X}	correct \boldsymbol{J}
an unique element	a unique element
an univariate data set	a univariate data set
an sphere	a sphere
an university	a university
an state	a state
incorrect \boldsymbol{X}	correct \boldsymbol{J}
the Theorem 3.1	Theorem 3.1
the inequality (4.2)	inequality (4.2)
probbem below	the problem below
following corollary	the following corollary
in proof of Proposition 2.3	in the proof of Proposition 2.3

Vasagh,
Mathematicseditor @gmail.com

Title
$a / a n$ or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information
 Ferdowsi Univ. of Mashhad

a/an or the

Vasagh,
Mathematicseditor @gmail.com

Title
$a / a n$ or the

incorrect \boldsymbol{X}	correct $\boldsymbol{\checkmark}$
a Hahn-Banach theorem	the Hahn-Banach theorem
the Schur's lemma	Schur's lemma
Cauchy inequality	the Cauchy inequality

Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \backslash cdots

Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

a/an or the

Vasagh,
Mathematicseditor @gmail.com
$a / a n$ or the

incorrect \boldsymbol{X}	$\operatorname{correct~} \boldsymbol{\checkmark}$
a Hahn-Banach theorem	the Hahn-Banach theorem
the Schur's lemma	Schur's lemma
Cauchy inequality	the Cauchy inequality

incorrect X	correct \checkmark
A is infinite set.	A is an infinite set.
A is an infinite.	A is infinite.

Dangling participle
Word order
Which or that
Writing mathematics
\Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Dangling participle

x Reading the Aims and Scope, the journal would be a good fit for my article.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Dangling participle

x Reading the Aims and Scope, the journal would be a good fit for my article.
\checkmark Reading the Aims and Scope, I realized the journal would be a good fit for my article.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Dangling participle

x Reading the Aims and Scope, the journal would be a good fit for my article.
\checkmark Reading the Aims and Scope, I realized the journal would be a good fit for my article.
x Setting $x=0$, the assertion follows.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Dangling participle

x Reading the Aims and Scope, the journal would be a good fit for my article.
\checkmark Reading the Aims and Scope, I realized the journal would be a good fit for my article.
x Setting $x=0$, the assertion follows.
\checkmark Setting $x=0$, we obtain the assertion.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Dangling participle

x Reading the Aims and Scope, the journal would be a good fit for my article.
\checkmark Reading the Aims and Scope, I realized the journal would be a good fit for my article.
x Setting $x=0$, the assertion follows.
\checkmark Setting $x=0$, we obtain the assertion.
\checkmark Setting $x=0$ yields the assertion.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash dots or \backslash cdots
Equation
References
Contact information

Faculty of Math. Sciences

Dangling participle

x Reading the Aims and Scope, the journal would be a good fit for my article.
\checkmark Reading the Aims and Scope, I realized the journal would be a good fit for my article.
x Setting $x=0$, the assertion follows.
\checkmark Setting $x=0$, we obtain the assertion.
\checkmark Setting $x=0$ yields the assertion.
\checkmark If $x=0$, then the assertion follows.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash dots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Dangling participle

x Reading the Aims and Scope, the journal would be a good fit for my article.
\checkmark Reading the Aims and Scope, I realized the journal would be a good fit for my article.
x Setting $x=0$, the assertion follows.
\checkmark Setting $x=0$, we obtain the assertion.
\checkmark Setting $x=0$ yields the assertion.
\checkmark If $x=0$, then the assertion follows.
x Integrating by parts, the expression becomes

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Dangling participle

x Reading the Aims and Scope, the journal would be a good fit for my article.
\checkmark Reading the Aims and Scope, I realized the journal would be a good fit for my article.
x Setting $x=0$, the assertion follows.
\checkmark Setting $x=0$, we obtain the assertion.
\checkmark Setting $x=0$ yields the assertion.
\checkmark If $x=0$, then the assertion follows.
x Integrating by parts, the expression becomes
\checkmark Integrating by parts, we find that the expression becomes

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Word order

x Let A be an $n \times n$ positive matrix.
Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \backslash cdots

Equation

References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

Word order

x Let A be an $n \times n$ positive matrix.
\checkmark Let A be a positive $n \times n$ matrix.
Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle

Which or that
Writing mathematics
\backslash Idots or \backslash cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

Word order

x Let A be an $n \times n$ positive matrix.
\checkmark Let A be a positive $n \times n$ matrix.
x Theorem 3.5, we prove in section 4.

Title

a/an or the
Dangling participle
(7) Word order

Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

Word order

x Let A be an $n \times n$ positive matrix.
\checkmark Let A be a positive $n \times n$ matrix.
x Theorem 3.5, we prove in section 4.
\checkmark We prove Theorem 3.5 in section 4.

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \backslash cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Word order

x Let A be an $n \times n$ positive matrix.
\checkmark Let A be a positive $n \times n$ matrix.
x Theorem 3.5, we prove in section 4.
\checkmark We prove Theorem 3.5 in section 4.
\checkmark Theorem 3.5 is proved in section 4.

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \backslash cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Word order

x Let A be an $n \times n$ positive matrix.
\checkmark Let A be a positive $n \times n$ matrix.
x Theorem 3.5, we prove in section 4.
\checkmark We prove Theorem 3.5 in section 4.
\checkmark Theorem 3.5 is proved in section 4.
x We can prove easily Theorem 3.5 by applying (2.1).
Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the

Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Word order

x Let A be an $n \times n$ positive matrix.
\checkmark Let A be a positive $n \times n$ matrix.
x Theorem 3.5, we prove in section 4.
\checkmark We prove Theorem 3.5 in section 4.
\checkmark Theorem 3.5 is proved in section 4.
x We can prove easily Theorem 3.5 by applying (2.1).
\checkmark We can easily prove Theorem 3.5 by applying (2.1).

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \backslash cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Word order

x Let A be an $n \times n$ positive matrix.
\checkmark Let A be a positive $n \times n$ matrix.
x Theorem 3.5, we prove in section 4.
\checkmark We prove Theorem 3.5 in section 4.
\checkmark Theorem 3.5 is proved in section 4.
x We can prove easily Theorem 3.5 by applying (2.1).
\checkmark We can easily prove Theorem 3.5 by applying (2.1).
x The two following sets
Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \backslash cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Word order

x Let A be an $n \times n$ positive matrix.
\checkmark Let A be a positive $n \times n$ matrix.
x Theorem 3.5, we prove in section 4.
\checkmark We prove Theorem 3.5 in section 4.
\checkmark Theorem 3.5 is proved in section 4.
x We can prove easily Theorem 3.5 by applying (2.1).
\checkmark We can easily prove Theorem 3.5 by applying (2.1).
x The two following sets
\checkmark The following two sets

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Which or that

x The identity function is a function, which always returns the same value that was used as its argument.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Which or that

x The identity function is a function, which always returns the same value that was used as its argument.
\checkmark The identity function is a function that always returns the same value that was used as its argument.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the

Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Which or that

x The identity function is a function, which always returns the same value that was used as its argument.
\checkmark The identity function is a function that always returns the same value that was used as its argument.
x Let H be a subgroup of a group G, which is solvable.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Which or that

x The identity function is a function, which always returns the same value that was used as its argument.
\checkmark The identity function is a function that always returns the same value that was used as its argument.
x Let H be a subgroup of a group G, which is solvable.
\checkmark Let H be a subgroup of a solvable group G.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the

Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Which or that

x The identity function is a function, which always returns the same value that was used as its argument.
\checkmark The identity function is a function that always returns the same value that was used as its argument.
x Let H be a subgroup of a group G, which is solvable.
\checkmark Let H be a subgroup of a solvable group G.
\checkmark Let H be a solvable subgroup of a group G.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the

Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Faculty of Math. Sciences

Which or that

x The identity function is a function, which always returns the same value that was used as its argument.
\checkmark The identity function is a function that always returns the same value that was used as its argument.
x Let H be a subgroup of a group G, which is solvable.
\checkmark Let H be a subgroup of a solvable group G.
\checkmark Let H be a solvable subgroup of a group G.
x The empty set, is denoted by \emptyset, is unique.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
(8) Which or that

Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Which or that

x The identity function is a function, which always returns the same value that was used as its argument.
\checkmark The identity function is a function that always returns the same value that was used as its argument.
x Let H be a subgroup of a group G, which is solvable.
\checkmark Let H be a subgroup of a solvable group G.
\checkmark Let H be a solvable subgroup of a group G.
x The empty set, is denoted by \emptyset, is unique.
\checkmark The empty set \square which is denoted by \emptyset_{\square} is unique.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
8 Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Which or that

x The identity function is a function, which always returns the same value that was used as its argument.
\checkmark The identity function is a function that always returns the same value that was used as its argument.
x Let H be a subgroup of a group G, which is solvable.
\checkmark Let H be a subgroup of a solvable group G.
\checkmark Let H be a solvable subgroup of a group G.
x The empty set, is denoted by \emptyset, is unique.
\checkmark The empty set \square which is denoted by \emptyset_{\square} is unique.
\checkmark The empty set ${ }_{\square}$ denoted by \emptyset_{\square} is unique.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
8 Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Which or that

x The identity function is a function, which always returns the same value that was used as its argument.
\checkmark The identity function is a function that always returns the same value that was used as its argument.
x Let H be a subgroup of a group G, which is solvable.
\checkmark Let H be a subgroup of a solvable group G.
\checkmark Let H be a solvable subgroup of a group G.
x The empty set, is denoted by \emptyset, is unique.
\checkmark The empty set \square which is denoted by \emptyset_{\square} is unique.
\checkmark The empty set ${ }_{\square}$ denoted by \emptyset_{\square} is unique.
x The empty set, contains no elements, is denoted by \emptyset.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
(8) Which or that

Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Which or that

x The identity function is a function, which always returns the same value that was used as its argument.
\checkmark The identity function is a function that always returns the same value that was used as its argument.
x Let H be a subgroup of a group G, which is solvable.
\checkmark Let H be a subgroup of a solvable group G.
\checkmark Let H be a solvable subgroup of a group G.
x The empty set, is denoted by \emptyset, is unique.
\checkmark The empty set \square which is denoted by \emptyset_{\square} is unique.
\checkmark The empty set ${ }_{\square}$ denoted by \emptyset_{\square}, is unique.
x The empty set, contains no elements, is denoted by \emptyset.
\checkmark The empty set,\square which contains no elements \square is denoted by \emptyset.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
8) Which or that

Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Which or that

x The identity function is a function, which always returns the same value that was used as its argument.
\checkmark The identity function is a function that always returns the same value that was used as its argument.
x Let H be a subgroup of a group G, which is solvable.
\checkmark Let H be a subgroup of a solvable group G.
\checkmark Let H be a solvable subgroup of a group G.
x The empty set, is denoted by \emptyset, is unique.
\checkmark The empty set ${ }_{\square}$ which is denoted by \emptyset_{\square} is unique.
\checkmark The empty set ${ }_{\square}$ denoted by \emptyset_{\square}, is unique.
x The empty set, contains no elements, is denoted by \emptyset.
\checkmark The empty set \square which contains no elements \square is denoted by \emptyset.
\checkmark The empty set ${ }_{\square}$ containing no elements ${ }_{\square}$, is denoted by \emptyset.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
8 Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Writing mathematics

$x n$ is positive, so it has a square root.

Vasagh,
Mathematicseditor @gmail.com

Title
a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.

Vasagh,
Mathematicseditor @gmail.com

Title
a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash dots or \backslash cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if
\checkmark A function f is said to be semicontinuous if
Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \backslash cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if
\checkmark A function f is said to be semicontinuous if
x For most points $x, x \in S$.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash dots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if
\checkmark A function f is said to be semicontinuous if
x For most points $x, x \in S$.
\checkmark We see that $x \in S$ for most points x.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if
\checkmark A function f is said to be semicontinuous if
x For most points $x, x \in S$.
\checkmark We see that $x \in S$ for most points x.
x When $k=2, G$ is an Eulerian graph.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if
\checkmark A function f is said to be semicontinuous if
x For most points $x, x \in S$.
\checkmark We see that $x \in S$ for most points x.
x When $k=2, G$ is an Eulerian graph.
\checkmark When $k=2$, the graph G is Eulerian.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics

Equation
References
Contact information

Editor's office

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if
\checkmark A function f is said to be semicontinuous if
x For most points $x, x \in S$.
\checkmark We see that $x \in S$ for most points x.
x When $k=2, G$ is an Eulerian graph.
\checkmark When $k=2$, the graph G is Eulerian.
x Then for all $f \in X, f(0)=0, A_{f}$ is compact.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics

ldots or \backslash cdots

Equation
References
Contact information

Editor's office

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if
\checkmark A function f is said to be semicontinuous if
x For most points $x, x \in S$.
\checkmark We see that $x \in S$ for most points x.
x When $k=2, G$ is an Eulerian graph.
\checkmark When $k=2$, the graph G is Eulerian.
x Then for all $f \in X, f(0)=0, A_{f}$ is compact.
\checkmark Then, for all $f \in X$ with $f(0)=0$, the set A_{f} is compact.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics

ldots or \backslash cdots

Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if
\checkmark A function f is said to be semicontinuous if
x For most points $x, x \in S$.
\checkmark We see that $x \in S$ for most points x.
x When $k=2, G$ is an Eulerian graph.
\checkmark When $k=2$, the graph G is Eulerian.
x Then for all $f \in X, f(0)=0, A_{f}$ is compact.
\checkmark Then, for all $f \in X$ with $f(0)=0$, the set A_{f} is compact.
x Let x, y be vertices in G.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics

ldots or \backslash cdots

Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if
\checkmark A function f is said to be semicontinuous if
x For most points $x, x \in S$.
\checkmark We see that $x \in S$ for most points x.
x When $k=2, G$ is an Eulerian graph.
\checkmark When $k=2$, the graph G is Eulerian.
x Then for all $f \in X, f(0)=0, A_{f}$ is compact.
\checkmark Then, for all $f \in X$ with $f(0)=0$, the set A_{f} is compact.
x Let x, y be vertices in G.
\checkmark Let x and y be vertices in G.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
9)Writing mathematics
\backslash dots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if
\checkmark A function f is said to be semicontinuous if
x For most points $x, x \in S$.
\checkmark We see that $x \in S$ for most points x.
x When $k=2, G$ is an Eulerian graph.
\checkmark When $k=2$, the graph G is Eulerian.
x Then for all $f \in X, f(0)=0, A_{f}$ is compact.
\checkmark Then, for all $f \in X$ with $f(0)=0$, the set A_{f} is compact.
x Let x, y be vertices in G.
\checkmark Let x and y be vertices in G.
\checkmark Let x, y, z be vertices in G.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Writing mathematics

$x n$ is positive, so it has a square root.
\checkmark Since n is positive, so it has a square root.
x Let f be a function. f is said to be semicontinuous if
\checkmark A function f is said to be semicontinuous if
x For most points $x, x \in S$.
\checkmark We see that $x \in S$ for most points x.
x When $k=2, G$ is an Eulerian graph.
\checkmark When $k=2$, the graph G is Eulerian.
x Then for all $f \in X, f(0)=0, A_{f}$ is compact.
\checkmark Then, for all $f \in X$ with $f(0)=0$, the set A_{f} is compact.
x Let x, y be vertices in G.
\checkmark Let x and y be vertices in G.
\checkmark Let x, y, z be vertices in G.
\checkmark Let x, y, and z be vertices in G.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Writing mathematics

\checkmark It follows that the set Z will have no element of the set Y lying in it.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
10 Writing mathematics

Idots or \cdots

Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

Writing mathematics

\checkmark It follows that the set Z will have no element of the set Y lying in it.
$\checkmark \checkmark$ Therefore no element of Y lies in Z.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
10 Writing mathematics

\backslash dots or \backslash cdots

Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

Writing mathematics

\checkmark It follows that the set Z will have no element of the set Y lying in it.
$\checkmark \checkmark$ Therefore no element of Y lies in Z.
$\checkmark \checkmark \checkmark$ Therefore the sets Y and Z are disjoint.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
10 Writing mathematics

\backslash dots or \backslash cdots

Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Writing mathematics

\checkmark It follows that the set Z will have no element of the set Y lying in it.
$\checkmark \checkmark$ Therefore no element of Y lies in Z.
$\checkmark \checkmark \checkmark$ Therefore the sets Y and Z are disjoint.
$\checkmark \checkmark \checkmark \checkmark$ Therefore $Y \cap Z=\emptyset$.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
10 Writing mathematics

\backslash Idots or \cdots

Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Writing mathematics

Vasagh,
Mathematicseditor @gmail.com
\checkmark It follows that the set Z will have no element of the set Y lying in it.
$\checkmark \checkmark$ Therefore no element of Y lies in Z.
$\checkmark \checkmark \checkmark$ Therefore the sets Y and Z are disjoint.
$\checkmark \checkmark \checkmark \checkmark$ Therefore $Y \cap Z=\emptyset$.
x As we let x become closer and closer to 0 , then y tends ever closer to t_{0}.

Title

a/an or the
Dangling participle
Word order
Which or that
10 Writing mathematics

\backslash dots or \cdots

Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Writing mathematics

Vasagh,
Mathematicseditor @gmail.com
\checkmark It follows that the set Z will have no element of the set Y lying in it.
$\checkmark \checkmark$ Therefore no element of Y lies in Z.
$\checkmark \checkmark \checkmark$ Therefore the sets Y and Z are disjoint.
$\checkmark \checkmark \checkmark \checkmark$ Therefore $Y \cap Z=\emptyset$.
x As we let x become closer and closer to 0 , then y tends ever closer to t_{0}.
$\checkmark \lim _{x \rightarrow 0} y=t_{0}$.

Title

a/an or the
Dangling participle
Word order
Which or that
10 Writing mathematics

\backslash dots or \cdots

Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Writing mathematics

Vasagh,
Mathematicseditor @gmail.com
\checkmark It follows that the set Z will have no element of the set Y lying in it.
$\checkmark \checkmark$ Therefore no element of Y lies in Z.
$\checkmark \checkmark \checkmark$ Therefore the sets Y and Z are disjoint.
$\checkmark \checkmark \checkmark \checkmark$ Therefore $Y \cap Z=\emptyset$.
x As we let x become closer and closer to 0 , then y tends ever closer to t_{0}.
$\checkmark \lim _{x \rightarrow 0} y=t_{0}$.
$x \forall x \exists y, x \geq 0 \rightarrow y^{2}=x$.

Title

a/an or the
Dangling participle
Word order
Which or that
10 Writing mathematics

\backslash dots or \cdots

Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Writing mathematics

Vasagh,
Mathematicseditor @gmail.com
\checkmark It follows that the set Z will have no element of the set Y lying in it.
$\checkmark \checkmark$ Therefore no element of Y lies in Z.
$\checkmark \checkmark \checkmark$ Therefore the sets Y and Z are disjoint.
$\checkmark \checkmark \checkmark \checkmark$ Therefore $Y \cap Z=\emptyset$.
x As we let x become closer and closer to 0 , then y tends ever closer to t_{0}.
$\checkmark \lim _{x \rightarrow 0} y=t_{0}$.
$x \forall x \exists y, x \geq 0 \rightarrow y^{2}=x$.
\checkmark Every nonnegative real number has a square root.

Title

a/an or the
Dangling participle
Word order
Which or that
10 Writing mathematics

\backslash dots or \cdots

Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

\backslash Idots or \cdots

x Let x_{1}, \ldots, x_{n} be such that $x_{1} \times \ldots \times x_{n}=1$.
Vasagh,
Mathematicseditor
@gmail.com

Title

a/an or the
Dangling participle

Word order
Which or that
Writing mathematics
\backslash dots or \backslash cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

\backslash Idots or \cdots

x Let x_{1}, \ldots, x_{n} be such that $x_{1} \times \ldots \times x_{n}=1$.
\checkmark Let x_{1}, \ldots, x_{n} be such that $x_{1} \times \cdots \times x_{n}=1$.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash dots or \backslash cdots

Equation

References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

\backslash Idots or \cdots

x Let x_{1}, \ldots, x_{n} be such that $x_{1} \times \ldots \times x_{n}=1$.
\checkmark Let x_{1}, \ldots, x_{n} be such that $x_{1} \times \cdots \times x_{n}=1$. Let $\$ x _1, \backslash / d o t s, x_{-} n \$$ be such that $\$ x _1 \backslash$ times $\backslash c d o t s \backslash$ times $x _n=1 \$$.

Equation

References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Mathematics writing

$$
\begin{equation*}
f(x)=\left(\frac{\sin (\pi x)}{1+\pi(i) x}\right)^{b} \quad \text { for } i \leq j \tag{1}
\end{equation*}
$$

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
Idots or \cdots

Equation

References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

Mathematics writing

$$
\begin{equation*}
f(x)=\left(\frac{\sin (\pi x)}{1+\pi(i) x}\right)^{b} \quad \text { for } i \leq j \tag{1}
\end{equation*}
$$

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics

Equation

References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Mathematics writing

$$
\begin{equation*}
f(x)=\left(\frac{\sin (\pi x)}{1+\pi(i) x}\right)^{b} \quad \text { for } i \leq j \tag{1}
\end{equation*}
$$

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Mathematics writing

$$
\begin{equation*}
f(x)=\left(\frac{\sin (\pi x)}{1+\pi(i) x}\right)^{b} \quad \text { for } i \leq j \tag{1}
\end{equation*}
$$

...(1) implies that
\backslash begin $\{$ equation $\} \backslash$ label $\{$ sample\}
$f(x)=\backslash \operatorname{left}(\backslash d f r a c\{\backslash \sin (\backslash p i x)\}\{1+$
\backslash pi(i)x\}\right }) ^ { \wedge } b \backslash q u a d \backslash text \{ for \} i \backslash leq j .
\end\{ equation\} }
... \backslash eqref $\{$ sample\} implies that

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Equation

$$
\begin{aligned}
x & =x_{1}+x_{2}+\cdots+x_{n} \leq y_{1}+y_{2}+\cdots+y_{n} \\
& +z_{1}+z_{2}+\cdots+z_{n}-\left(t_{1}+t_{2}+\cdots+t_{n}\right) .
\end{aligned}
$$

Vasagh,
Mathematicseditor @gmail.com

Title
a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash dots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences
Ferdowsi Univ. of Mashhad

Equation

x

$$
\begin{aligned}
x & =x_{1}+x_{2}+\cdots+x_{n} \leq y_{1}+y_{2}+\cdots+y_{n} \\
& +z_{1}+z_{2}+\cdots+z_{n}-\left(t_{1}+t_{2}+\cdots+t_{n}\right)
\end{aligned}
$$

$x=x_{1}+x_{2}+\cdots+x_{n}$

$$
\leq y_{1}+y_{2}+\cdots+y_{n}+z_{1}+z_{2}+\cdots+z_{n}
$$

$$
-\left(t_{1}+t_{2}+\cdots+t_{n}\right)
$$

Vasagh,
Mathematicseditor
@gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
Idots or \cdots

References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Equation

x

$$
\begin{aligned}
x & =x_{1}+x_{2}+\cdots+x_{n} \leq y_{1}+y_{2}+\cdots+y_{n} \\
& +z_{1}+z_{2}+\cdots+z_{n}-\left(t_{1}+t_{2}+\cdots+t_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
x= & x_{1}+x_{2}+\cdots+x_{n} \\
\leq & y_{1}+y_{2}+\cdots+y_{n}+z_{1}+z_{2}+\cdots+z_{n} \\
& -\left(t_{1}+t_{2}+\cdots+t_{n}\right) .
\end{aligned}
$$

```
\(\backslash\) begin\{align*\}
\(x=\& x \_1+x \_2+\backslash\) cdots \(+x \_n \backslash \backslash\)
\(\backslash\) leq\&y_1+y_2+ \cdots \(+y \_n+z_{-} 1+z_{-} 2+\backslash c d o t s+z \_n \backslash \backslash\)
\& \(-\left(t_{-} 1+t_{-} 2+\backslash\right.\) cdots \(\left.+t_{-} n\right)\).
\(\backslash e n d\{\) align \(*\) \}
```

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the

Dangling participle
Word order
Which or that
Writing mathematics
\backslash dots or \backslash cdots
13 Equation
References
Contact information

Editor's office

Equation

$$
\begin{aligned}
x+y=e^{a b}(& \int_{x}^{y} f(t) \frac{a t+b}{t+2} d t \\
& \left.+e^{a /(a+b)} f(a b)+\int_{x}^{y} f(t) \frac{a+b}{t} d t\right)
\end{aligned}
$$

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

Equation

Vasagh,
Mathematicseditor @gmail.com

Title

$$
\begin{aligned}
x+y=e^{a b}(& \int_{x}^{y} f(t) \frac{a t+b}{t+2} d t \\
& \left.+e^{a /(a+b)} f(a b)+\int_{x}^{y} f(t) \frac{a+b}{t} d t\right)
\end{aligned}
$$

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash dots or \backslash cdots
\backslash begin\{align*\}
$x+y=$
$e^{\wedge}\{a b\} \& \backslash l e f t\left(\backslash i n t^{\wedge} y _x f(t) \backslash f r a c\{a t+b\}\{t+2\} d t \backslash r i g h t . \backslash \backslash\right.$
$\& \backslash q u a d \backslash$ left. $+e^{\wedge}\{a /(a+b)\} f(a b)+$
$\left.\backslash i n t^{\wedge} y _x f(t) \backslash f r a c\{a+b\}\{t\} d t \backslash r i g h t\right)$.
$\backslash e n d\{$ align $*$ \}

References

Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

References

This was addressed by both E. Luo [24] and F.-E. Luo [25, Theorem 3.7].

Vasagh,
Mathematicseditor @gmail.com

Dangling participle
Word order
Which or that
Writing mathematics
\dots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences Ferdowsi Univ. of Mashhad

References

Vasagh,
Mathematicseditor @gmail.com

This was addressed by both E. Luo [24] and F.-E. Luo [25, Theorem 3.7].
This was addressed by both E. Luo \cite\{luo\} and F.-E. Luo \cite[Theorem 3.7]\{f.luo\}.

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash dots or \backslash cdots
Equation
15 References
Contact information

Editor's office

References

This was addressed by both E. Luo [24] and F.-E. Luo [25, Theorem 3.7].
This was addressed by both E. Luo \cite\{luo\} and F.-E. Luo \cite[Theorem 3.7]\{f.luo\}.
Schur et al. proved the following result $;$; see $[2, \mathrm{pp}$. 35-37].

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\backslash dots or \cdots
Equation
15 References
Contact information

Editor's office

References

This was addressed by both E. Luo [24] and F.-E. Luo [25, Theorem 3.7].
This was addressed by both E. Luo \cite\{luo\} and F.-E. Luo \cite[Theorem 3.7]\{f.luo\}.
Schur et al. proved the following result $;$; see $[2, \mathrm{pp}$. 35-37].
x We use the embedding technique $([3,4,7])$.

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the

Dangling participle
Word order
Which or that
Writing mathematics

Idots or \cdots

Equation
References
Contact information

Editor's office

References

This was addressed by both E. Luo [24] and F.-E. Luo [25, Theorem 3.7].
This was addressed by both E. Luo \cite\{luo\} and F.-E. Luo \cite[Theorem 3.7]\{f.luo\}.
Schur et al. proved the following result $[$; see $[2, \mathrm{pp}$. 35-37].
x We use the embedding technique $([3,4,7])$.
\checkmark We use the embedding technique (see, for example, [3,4,7]).

Vasagh,
Mathematicseditor @gmail.com

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
\Idots or \cdots
Equation
5eferences
Contact information

Editor's office
Faculty of Math. Sciences

Vasagh,
Mathematicseditor @gmail.com

In case you have any comments, suggestions, or have found a bug, please do not hesitate to contact me. You can find my contact details below.

Z. Vasagh

Telegram:09366263106 \& @Matheditor
mathematicseditor@gmail.com
Editor's Office (Room 527)
The Faculty of Mathematical Sciences
Ferdowsi University of Mashhad

Title

a/an or the
Dangling participle
Word order
Which or that
Writing mathematics
Idots or \cdots
Equation
References
Contact information

Editor's office
Faculty of Math. Sciences

Thank you

The author is very thankful for the comments and suggestions made by Professor Moslehian

